Quasi-Monte Carlo – halftoning in high dimensions?

Ken Hanson

CCS-2, Methods for Advanced Scientific Simulations Los Alamos National Laboratory

This presentation available at http://www.lanl.gov/home/kmh/

Overview

- Digital halftoning purpose and constraints
 - ▶ direct binary search (DBS) algorithm for halftoning
 - ► minimize cost function based on human visual system
- Quasi-Monte Carlo (QMC) purpose, examples
- Minimum Visual Discrepancy (MVD) algorithm for points, analogous to DBS
 - examples
 - ► integration tests
- Extensions; higher dimensions, non-uniform sampling
 - ▶ possible approaches Voronoi, electrostatic repulsion, ...

Validation of physics simulation codes

- Computer simulation codes
 - ► many input parameters, many output variables
 - very expensive to run; up to weeks on super computers
- It is important to validate codes therefore need
 - ▶ to compare codes to experimental data; make inferences
 - advanced methods to estimate sensitivity of simulation outputs on inputs
 - Latin square (hypercube), stratified sampling, quasi-Monte Carlo
- Examples of complex simulations
 - ocean and atmosphere modeling
 - ► aircraft design, etc.
 - casting of metals

Example of ocean model simulation

1/6 degree resolution – rms dev. in ocean height

Digital halftoning techniques

Purpose

- ► render a gray-scale image by placing black dots on white background
- ► make halftone rendering **look** like original gray-scale image

Constraints

- ► resolution size and closeness of dots, number of dots
- speed of rendering
- Various algorithmic approaches
 - ▶ error diffusion, look-up tables, blue-noise, ...
 - ► concentrate here on Direct Binary Search

DBS example

 Direct Binary Search produces excellent-quality halftone images

 Sky – quasi-random field of dots, uniform density

Computationally intensive

Li and Allebach, *IEEE Trans*. *Image Proc*. **9**, 1593-1603 (2000)

Direct Binary Search (DBS) algorithm

- Consider digital halftone image to be composed of black or white pixels
- Cost function is based on perception of two images $\varphi = \left| \mathbf{h} * (\mathbf{d} \mathbf{g}) \right|^2$
 - ► where **d** is the dot image, **g** is the gray-scale image to be rendered, **h** is the image of the blur function of the human eye, and * represents convolution
- To minimize φ
 - ightharpoonup start with a collection of dots with average local density $\sim \mathbf{g}$
 - ▶ iterate sequentially through all image pixels;
 - for each pixel, swap value with neighborhood pixels, or toggle its value to reduce φ

Monte Carlo integration techniques

Purpose

► estimate integral of a function over a specified region *R* in *m* dimensions, based on evaluations at *n* sample points

$$\int_{R} f(x) dx = \frac{V_{R}}{n} \sum_{i=1}^{n} f(x_{i})$$

Constraints

- ▶ integrand not available in analytic form, but calculable
- ▶ function evaluations may be expensive, so minimize them

Algorithmic approaches

- ▶ focus on accuracy in terms of # function evaluations *n*
- ▶ quadrature (Simpson) good for few dimensions; rms err $\sim n^{-1}$
- ► Monte Carlo useful for many dimensions; rms err $\sim n^{-1/2}$
- ▶ quasi-Monte Carlo reduce # evaluations; rms err $\sim n^{-1}$

Quasi-Monte Carlo

Purpose

- ► estimate integral of a function over a specified domain in *m* dimensions
- ► obtain better rate of convergence of integral estimation than seen in classic Monte Carlo
- Constraints
 - ▶ integrand function not available analytically, but calculable
 - ▶ function known (or assumed) to be well behaved
- Standard QMC approaches use low-discrepancy sequences; product space (Halton, Sobel, Faure, Hammersley, ...)
- Propose new way of generating sets of sample points

Point set examples

- Examples of different kinds of point sets
 - ▶ 400 points in each
- If quasi-MC sequences have better integration properties than random, is halftone pattern even better?

Discrepancy

 Much of QMC work is based on the discrepancy, defined for samples covering the unit square in 2D as

$$D_2 = \int_{U} [n(x, y) - A(x, y)]^2 dxdy$$

- ▶ where integration is over unit square,
- ► n(x, y) is the number of points in the rectangle with opposite corners (0, 0) to (x, y), and
- A(x, y) is the area of the rectangle

- Related to upper bounds in integr. error for class of funcs.
- Clearly a measure of uniformity of dot distribution

Standard Quasi-MC sequences with low D₂

Halton

► based on expansion in terms of fractions of powers of primes, for the prime p=2:
1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8,...

Sobel

- based on primitive polynomials
- Observe similarity to halftone patterns for 100 points
 - points could be more uniformly distributed
- But objectionable patterns develop for many point

Minimum Visual Discrepancy (MVD) algorithm

Inspired by Direct Binary Search halftoning algorithm

- Start with some set of points
- Goal is to create uniformly distributed set of points
- Cost function is variance in blurred point image

$$\psi = \text{var}(\mathbf{h} * \mathbf{d})$$

- ► where **d** is the point (dot) image, **h** is the blur function of the human eye, and * represents convolution
- Minimize ψ by
 - ▶ starting with some point set (random, stratified, Halton,...)
 - ▶ iterating through points in random order;
 - ▶ moving each point in 8 directions, and accept move that lowers ψ the most

Minimum Visual Discrepancy (MVD) algorithm

- MVD result; start with 100 points from Halton sequence
- MVD objective is to minimize variance in blurred image
- Effect is to force points to be evenly distributed, or as far apart from each other as possible
- Might expect global minimum is a regular pattern

MVD results

- Final MVD distribution depends on initial point set
 - ▶ algorithm seeks local minimum, not global (as does DBS)
- Patterns somewhat resemble regular hexagonal arrary
 - similar to lattice structure in crystals
 - ► however, lack long-range (coarse scale) order
 - ▶ best to start with point set with good long-range uniformity

Point set examples

- Various kinds of point sets (400 points)
- Varying degrees of randomness and uniformity
- As the points become more uniformly distributed, the more accurate are the values of estimated integrals

Integration test problems

- RMS error for integral of func2= $\prod \exp(-2|x_i x_i^0|)$; $0 < x_i^0 < 1$
 - ▶ from worst to best —random, Halton, MVD, square grid
 - ▶ lines show $N^{-1/2}$ (expected for MC) and N^{-1} (expected for QMC)

Voronoi analysis

Voronoi diagram

- partitions region of interest into polygons
- ▶ points within each polygon are closest to one generating point, Z_i
- MC technique provides easy way to do Voronoi analysis
 - randomly throw large number of points X_i into region
 - ► compute distance of each X_i to all generating points $\{Z_i\}$
 - sort into those closest to each Z_i to identify
 - ightharpoonup can compute A_i , radial moments,...

• Extensible to high dimensions

100, MVD

Metric needed to rank value of point sets

- Need to be able to identify "good" point sets
- Especially important in high dimensions where visualization is difficult or impossible
- From integration tests of several functions and many different kinds of point sets, observe:
 - ightharpoonup discrepancy D_2 does not seem to track rms error
 - Voronoi analysis does not seem to track rms error
 - ▶ but, low rms errors are obtained when both D_2 and rms deviation of V areas are small

Conclusions

- Minimum Visual Discrepancy algorithm
 - produces point sets resembling uniform halftone images
 - ▶ yields better integral estimates than standard QMC seqs.
- Extensions
 - ▶ Prospects for creating good point sets in high dimensions
 - MVD will not work; need discrete representation of image (?)
 - electrostatic potential field approach is promising
 - analogous to collection of electrons confined to box
 - perhaps similar to 'springs' model of Atkins et al.
 - Voronoi analysis centroidal Voronoi tesselation
 - ► Sequential development of point set
 - add one point at a time, placing it at an optimal location, that is, in holes

Bibliography

- ► K. M. Hanson, "Quasi-Monte Carlo: halftoning in high dimensions?," to be published in *Proc. SPIE* **5016** (2003)
- ▶ P. Li and J. P. Allebach, "Look-up-table based halftoning algorithm," *IEEE Trans. Image Proc.* **9**, pp. 1593-1603 (2000)
- ► H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM (1992)
- ▶ Q. Du, V. Faber, and M. Grunburger, "Centroidal Voronoi tesselations: applications and algorithms," *SIAM Review* **41**, 637-676 (1999)

This presentation and paper available at http://www.lanl.gov/home/kmh/